Test 1 / Numerical Mathematics 1 / May 11th 2020, University of Groningen

No calculator and additional material is allowed.
All answers need to be justified using mathematical arguments.
Total time: 1 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) +10 minutes (if special needs)
Remember: oral "checks" may be run afterwards.

Grade $=($ obtained points $)+1$

Consider a function $g \in C^{5}([a, b])$, and the approximating polynomial $z(x)$ defined as:

$$
z(x)=g(a)+g^{\prime}(a)(x-a)+\frac{1}{2} g^{\prime \prime}(a)(x-a)^{2}
$$

(a) 2 Compute an error bound ϵ (independent on x) such that $|g(x)-z(x)|<\epsilon, \forall x \in[a, b]$, where a, b and g appear explicitly in ϵ. Verify that ϵ goes to zero when $b \rightarrow a$.
(b) 2 Use the approximating polynomial $z(x)$ to define a numerical integration rule of $g(x)$ over $[a, b]$.
(c) 1.5 What is the degree of exactness of the resulting integration method? Justify rigorously your answer.
(d) 1.0 Draw how $z(x)$ approximates the function $\cos x$ over $x \in[-\pi, \pi]$. Illustrate (shading some region of the plot, for instance) the numerical integration rule.
(e) 2.5 Assume perturbed measurements of g of the form $\hat{g}^{(i)}(a)=g^{(i)}(a)+\delta_{i} /(b-a)^{i}$, with the superindex (i) denoting the i th-derivative. The approximating function now has the form:

$$
\hat{z}(x)=\hat{g}(a)+\hat{g}^{\prime}(a)(x-a)+\frac{1}{2} \hat{g}^{\prime \prime}(a)(x-a)^{2}
$$

Prove that:

$$
|g(x)-\hat{z}(x)| \leq \epsilon+\max _{i}\left|\delta_{i}\right| \sum_{i=0}^{2} \frac{1}{i!}
$$

